

NEW FRAMEWORKS FOR ANALYSING SECURITY-EFFICIENCY TRADEOFFS IN RANGE SEARCHABLE ENCRYPTION

Members:

Soh Jun Heng, Ang Wei Sheng Wilson, Elton Ng Yew Tien (Catholic High School)

Mentors:

Ruth Ng li Yung, Phang Yan Feng Benito (DSO National Laboratories)

What is Range Searchable Encryption (**RSE**)?

ncit	ive)	

Methodology

• Complexity theory to describe space/time efficiency + security

	Employ	ee Records	~ (
	(e.g. Sala	ry, Bonuses)	~ `
User (e.g. Company HR)			
RSE WILL:	USER CAN:		SER
Store files on external server	Access files anywhere		See o
Index files	Search for files quickly		
Encrypt files	Store files securely		

Existing Literature	Problem	Our Contributions			
Introduced different RSE schemes[1] [2]		Standardise comparison metrics			
Qualitative security analysis of schemes	Unable to directly compare schemes Confusion in picking scheme	Novel quantifiable measure of information leakage of schemes			
Comparison Metrics: (1) Time Efficiency, (2) Security, (3) Space Efficiency					

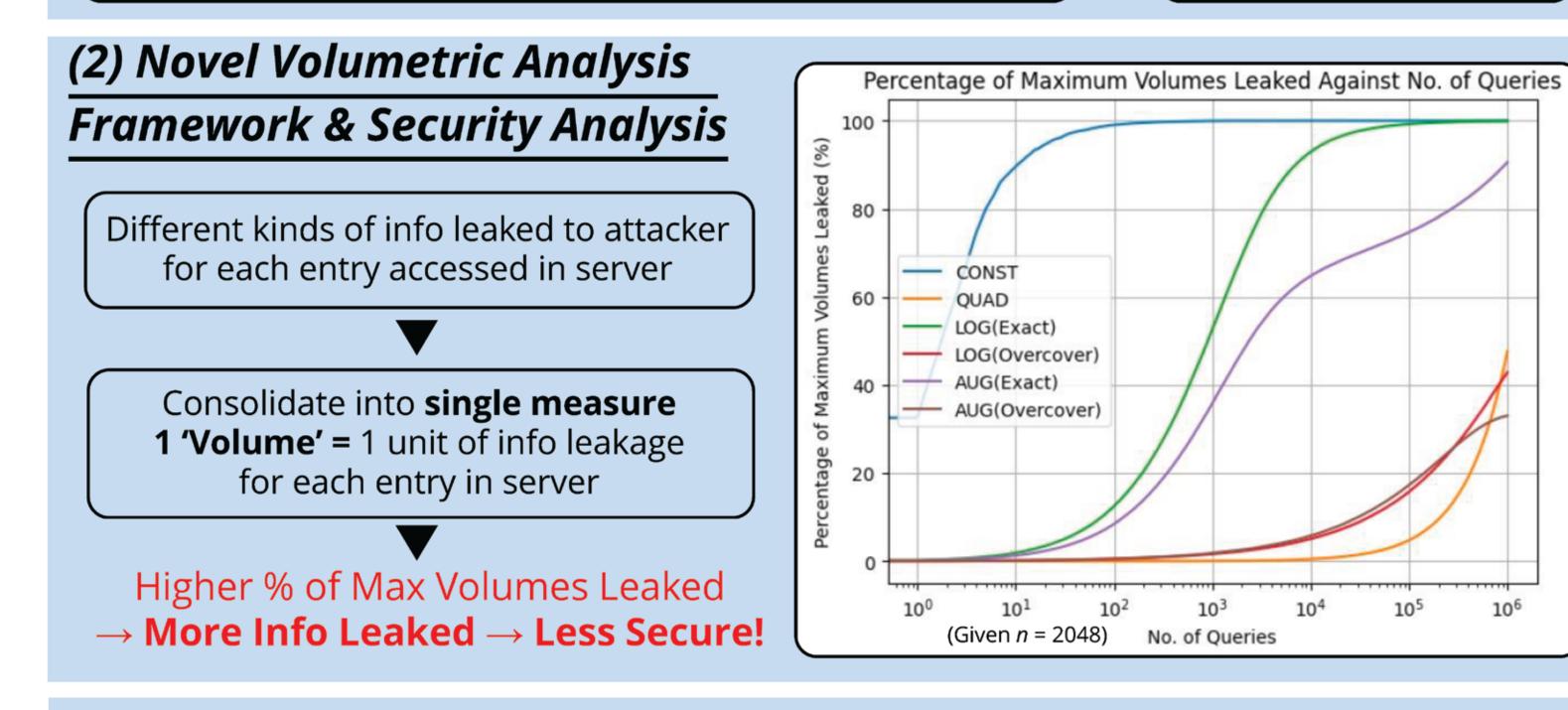
- loud Server **RVER CANNOT:** contents of files Modify files
- Theoretical models of scheme performance as input size increases
- **High-level view** of scheme performance

Advantages:

- Universal analysis, system independent
- More objective and applicable comparisons

Impacts of Our Work

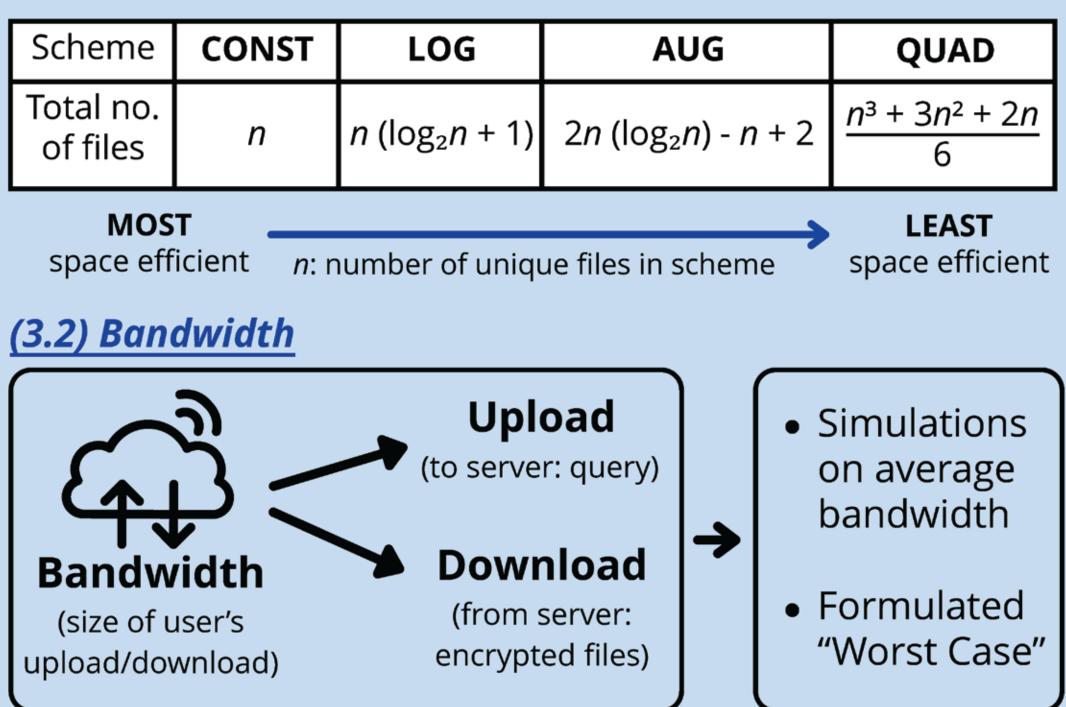
- Developers can pick **efficient RSE scheme**
- Save resources! (time, storage, **\$\$\$**)



(1) Time Complexity Analysis 1. (Setup) Time to set up encrypted database on server 2. (Query) Time to search for + retrieve files from server Runtime Analysis of algorithms in schemes

(3) Space Complexity Analysis

(3.1) *Storage*


Given *n* unique files (input), some schemes store **duplicate files** on the server (due to scheme design).

Overall Security-Efficiency Tradeoffs

<u>overall security Ejjlelency madeojjs</u>					Bandwidth - Download _		
	Space Efficiency			Time Efficiency		Security	(size of user's (from server: • Formulate upload/download) encrypted files) • Worst Ca
Scheme	eme Storage Bandwidth Bandwidth Runtime Runtime Volume (Upload) (Download) (Setup) (Query) Leakage	upload/download) encrypted files) vvorst Cas					
CONST	θ(<i>n</i>)	θ(<i>R</i>)	θ(<i>R</i>)	θ(<i>n</i>)	θ(<i>R</i>)	O(<i>R</i>)	Final Recommendations
QUAD	θ(<i>n</i> ³)	θ(1)	θ(<i>R</i>)	θ(<i>n</i> ³)	θ(<i>R</i>)	O(1)	 (1) DO NOT IMPLEMENT CONST or QUAD Terrible security and storage respectively
LOG (Overcover)	θ(<i>n</i> log ₂ <i>n</i>)	θ(1)	O(<i>n</i>)	θ(<i>n</i> log ₂ <i>n</i>)	O(<i>n</i>)	O(1)	 (2) USE LOG or AUG INSTEAD Balanced across all metrics
_OG (Exact)	θ(<i>n</i> log ₂ <i>n</i>)	O(log ₂ R)	θ(<i>R</i>)	θ(<i>n</i> log ₂ <i>n</i>)	θ(<i>R</i>)	O(log ₂ R)	Suitable for most use cases
AUG (Overcover)	θ(<i>n</i> log ₂ <i>n</i>)	θ(1)	O(<i>n</i>)	θ(<i>n</i> log ₂ <i>n</i>)	O(<i>n</i>)	O(1)	 (3) Pros of Overcover + Exact Cover Overcover: more secure Exact Cover: better for frequent querying
AUG (Exact)	θ(<i>n</i> log ₂ <i>n</i>)	O(log ₂ R)	θ(<i>R</i>)	θ(<i>n</i> log₂ <i>n</i>)	θ(<i>R</i>)	O(log ₂ R)	
<u>egend</u> Green Excellen Lime Good		<i>R</i> : Size of <i>n</i> : No. o	of user query f unique files ir is the max use	n scheme	θ: Tight b	worst case)	 Future Work 1. Devise other metrics 2. Evaluate more schemes → Developers make better choir

More Files Stored \rightarrow Less Space Efficient \rightarrow Higher Server Cost

References:

[1] Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., & Garofalakis, M. (2016). Practical private range search revisited. SIGMOD '16: Proceedings of the 2016 International Conference on Management of Data, 185–198. https://doi.org/10.1145/2882903.2882911

[2] Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., & Steiner, M. (2015). Rich Queries on Encrypted Data: Beyond Exact Matches. In Lecture notes in computer science (pp. 123–145). https://doi.org/10.1007/978-3-319-24177-7_7

